Practical Secure Remote
Computation

Amir Herzberg
Haya Shulman

Talk Outline

* Basic two-party computation building blocks:
— Yao’s garbled circuit

— Oblivious transfer

* Secure two-party computation with ottline
trusted third party against malicious adversaries

* Hair two-party computation

One-round secure computation and
secure autonomous mobile agents

* Secure function evaluation (SFE):
Alice has an input x and Bob has an input y.

The goal s to compute f(x,9)=(f,(>,9),1>(>,))) tn one round
computation, such that Alice obtains f,(x,y) and Bob obtains f,(x,y)

* Any function computable by a poly sized circuit has a one-
round secure computation scheme

— Cryptographic tools:
* Yao’s garbled circuits

e One-round oblivious transfer

* Security properties:
— Privacy of the inputs supplied by local host
— Integrity of the computation

Cryptographic Tools: Garbled Circuit

Represent {(°,") as a Boolean circuit

Remote host “garbles” the circuit:

— V wire, assigns random strings representing 0/1

— V gate, constructs a “secure’ garbled truth table

Remote host sends to local the garbled tables and
random strings corresponding to its input

Local host uses (1-2)oblivious transfer to obtain
garbled strings of its input

Evaluates the garbled circuit, and obtains the result

Cryptographic Tools: Garbled Circuit
Example: AND Gate Construction

-
-
-
-
-

~o
~
-~
-~
-~

X |l v | =z
k. (0) 'k, (0) I'k,(0)
k. (0) 'k, (1) I'k,(0)
k. (1) 1k, (0) Ik, (0)
k (1) Tk, (1) Tk, (1)

CZ(OaO)=Ekx(o)(Eky(o)(kZ(O)))
c,(0, 1)=Ekx(o)(Eky(1)(kz(0)))
c,(1 ,O)=Ekx(1)(Eky(0)(kz(0)))
c,(1, 1)=E1<X(1)(Eky(1)(kz(1)))

- Permute rows

Cryptographic Tools: Oblivious

Transfer
* Can be based on most public-key systems

* The sender has two inputs, and the receiver wants
to learn one of them, at the end of the protocol:

— the receiver learns this input and nothing else

— the sender should not learn which input this was

@

oT

Secure Two-Party Computation in
Malicious Setting

* Secure Function Evaluating (SFE) based on garbled
circuits is secure against semi-honest adversaries only

— If Alice 1s malicious she can learn Bob’s input by sending
incorrect representation for one of Bob’s input bits
* Theoretical solution: use a cut-and-choose protocol
— Alice sends many circuits

— Bob requests to expose all but one

e If all constructed correctly Bob evaluates the garbled circuit on its
secret input

— Inefficient: cheating is detected with probability related to the
number of garbled circuits

Secure Two-Party Computation with
Offline TTP in Malicious Setting

* QOur solution: use TTP to construct and sign the
garbled circuit computing a known function

* Offline generation phase, performed by TTP:

— Constructs a circuit C computing a known function

and garbles C to obtain C’

— Generates a signature key-pair (s&,0£) and signs the
garbled circuit

* For each input of Bob: the signature 1s on the random string
representing the input bit of Bob, the value of the bit and the
index

Secure Two-Party Computation with
Offline TTP in Malicious Setting

* Execution phase:
— Alice sends Bob the garbled circuit

* ie., garbled tables, and strings for her inputs
* Runs OT to transfer to Bob representation for his input

— Bob evaluates the circuit on his input, and returns the result

to Alice

e But, malicious Alice can cheat:
— E.g., sends an incorrect representation of input 1 and correct

for 0
— Bob fails to evaluate if has input 1
— Alice learns this input bit value

 Solution: TIP encodes circuit to ensure detection of
malicious behaviour without exposing Bob’s input

Secure Two-Party Computation with
Offline TTP in Malicious

e Solution: TTP encodes circuit to ensure detection of
malicious behaviour without exposing Bob’s input

— Each input wire of Bob at level O (input to the circuit) is replaced by
a majority gate, e.g., 2 out of 3 (input values)

* To read bit 0 Bob provides to OT two 0-es and one 1 (the correct majority
values and complement for minority values)

— Alice and Bob run OT for each input bit (to majority gate) of Bob

KA K,*

K &(1) —- K Ane
— ANB
Ko |AND)l —> K—"'"B{z} Ke |AND)=
b g Encode ~p A MAJORITY

KE{33

Encoded Circuit Construction

FEach input wire at level zero 1s replaced by a majority gate

K, K’
K 3{1} —- KbAI"‘IEt
— ANB b
K ® AND |::> I::> K 3{2; K. ® AND j— =
b Encode —b e MAJORITY

Secure Two-Party Computation with
Offline TTP in Malicious Setting

* Alice runs OT with Bob for each majority gate
— E.g., three inputs to majority gate

— Bob requests two bits that encode the value of its
real input and requests one complement bit

* If Alice encoded incorrectly either bit this is
detected, yet Bob’s input is kept secret

Secure Two Party Computation
Against Malicious Adversaries

Alice Off-line TTP Bob

0A.g, 1, 8 0B.g, 1, §
-t

1. Given g,n,s:

(c. {0, Y], Z]}, . ") ¢« ConstructGarbledCircuit(g ,n,s);
(sign. TTP,v.TTP) « SignKG (I°);

V'b,i: ofif« Sign_, (Y, [i]l|bl[D);

24 00, B, 0[], Dy | ConTIP .
34 Input: x(1...n) 38 Input: y(1...n)
{Ybﬁ ol Vo ey 4. l-out-of-2 Oblivious Transfer [y [7 ;E}; =
. A CLI D E T Ny, Lorette C D)

8 (Vi,b) If Z [i]=([i] then z(i)=b else z(i)=A;
If z(i)=A for some i then return ‘invalid'
else return z(1...n)

Fair Two Party Computation

* Alice has input x and Bob has input y and they wish
to evaluate a common function fon their inputs, s.t.
— Alice receives f,(x,7) and Bob receives f,(x,y)
— Or both recetve failure

* Given a protocol 115 to implement g(x,y)=(z, :) with
output g at Alice only, construct a fair protocol Il

to implement fusing an offline trusted third party
TP

Fair Two Party Computation

Alice Bob
1. Given: fix,y)=(f,(x.y).f (x.y)) and TTP's public key e.TTP
Denote: ¢ =AE, (fi(x.y)), cg=AE o(f,(x.}), Cm=Eﬂ_m(¢ lleg).

8o 1ro((K.A),(v.KB))=E, . ..(c licg) || AE, ,(f,(xy)llc,)

2A. Input: x,5 28. Input: y,s
KA—_{0,1F KB {01}

3. Apply protocol 11 (two-party computation with output only to Alice)
to securely compute g, .. ((x,KX.A), (v.K.B))

4. Cppr AE(fixy)lc,)
i}

8. A‘E_E.B Cf_—,{rﬁv/} C_-!)

‘ 68. DV, ((E, 5(fi(x.))lle,)
64.DV_ (c,) [= 5l
K44 ¢
fixy) TA. (Timeout or invalid) €, - . 7B. (Timeout or invalid) Abort J;)
8A. C, TTP 88. Cp
#DVedles) ™ D7, ,(c,)

Secure Fair Validated Computing

* Alice’s input may be a program
* Validate the input of Alice to prevent execution
ot malicious program

— e.g., exposing input of Bob

* Construct practical validated computing using
the protocols presented before

