
Practical Secure Remote

Computation

Amir Herzberg

Haya Shulman

Talk Outline

• Basic two-party computation building blocks:

– Yao’s garbled circuit

– Oblivious transfer

• Secure two-party computation with offline
trusted third party against malicious adversaries

• Fair two-party computation

One-round secure computation and

secure autonomous mobile agents
• Secure function evaluation (SFE):

Alice has an input x and Bob has an input y.
The goal is to compute f(x,y)=(f1(x,y),f2(x,y)) in one round
computation, such that Alice obtains f1(x,y) and Bob obtains f2(x,y)

• Any function computable by a poly sized circuit has a one-
round secure computation scheme
– Cryptographic tools:

• Yao’s garbled circuits

• One-round oblivious transfer

• Security properties:
– Privacy of the inputs supplied by local host

– Integrity of the computation

Cryptographic Tools: Garbled Circuit

• Represent f(·,·) as a Boolean circuit

• Remote host “garbles” the circuit:

– ∀ wire, assigns random strings representing 0/1

– ∀ gate, constructs a “secure” garbled truth table

• Remote host sends to local the garbled tables and
random strings corresponding to its input

• Local host uses (1-2)oblivious transfer to obtain
garbled strings of its input

• Evaluates the garbled circuit, and obtains the result

Cryptographic Tools: Garbled Circuit

Example: AND Gate Construction

x | y | z

0 | 0 | 0

0 | 1 | 0

1 | 0 | 0

1 | 1 | 1

x y

0

1

x | y | z

kx(0) | ky(0) | kz(0)

kx(0) | ky(1) | kz(0)

kx(1) | ky(0) | kz(0)

kx(1) | ky(1) | kz(1)

Permute rows
z

cz(0,0)=Ekx(0)(Eky(0)(kz(0)))

cz(0,1)=Ekx(0)(Eky(1)(kz(0)))

cz(1,0)=Ekx(1)(Eky(0)(kz(0)))

cz(1,1)=Ekx(1)(Eky(1)(kz(1)))

Cryptographic Tools: Oblivious

Transfer
• Can be based on most public-key systems

• The sender has two inputs, and the receiver wants
to learn one of them, at the end of the protocol:

– the receiver learns this input and nothing else

– the sender should not learn which input this was

Receiver
b ∈{0,1}

Sender r0, r1

r
b

b
r1

r0

OT

Secure Two-Party Computation in

Malicious Setting

• Secure Function Evaluating (SFE) based on garbled
circuits is secure against semi-honest adversaries only
– If Alice is malicious she can learn Bob’s input by sending

incorrect representation for one of Bob’s input bits

• Theoretical solution: use a cut-and-choose protocol
– Alice sends many circuits

– Bob requests to expose all but one
• If all constructed correctly Bob evaluates the garbled circuit on its

secret input

– Inefficient: cheating is detected with probability related to the
number of garbled circuits

Secure Two-Party Computation with

Offline TTP in Malicious Setting

• Our solution: use TTP to construct and sign the
garbled circuit computing a known function

• Offline generation phase, performed by TTP:

– Constructs a circuit C computing a known function f,

and garbles C to obtain C’

– Generates a signature key-pair (sk,vk) and signs the

garbled circuit

• For each input of Bob: the signature is on the random string

representing the input bit of Bob, the value of the bit and the
index

• Execution phase:
– Alice sends Bob the garbled circuit

• i.e., garbled tables, and strings for her inputs
• Runs OT to transfer to Bob representation for his input

– Bob evaluates the circuit on his input, and returns the result
to Alice

• But, malicious Alice can cheat:
– E.g., sends an incorrect representation of input 1 and correct

for 0

– Bob fails to evaluate if has input 1

– Alice learns this input bit value

• Solution: TTP encodes circuit to ensure detection of
malicious behaviour without exposing Bob’s input

Secure Two-Party Computation with

Offline TTP in Malicious Setting

Secure Two-Party Computation with

Offline TTP in Malicious

• Solution: TTP encodes circuit to ensure detection of

malicious behaviour without exposing Bob’s input

– Each input wire of Bob at level 0 (input to the circuit) is replaced by

a majority gate, e.g., 2 out of 3 (input values)

• To read bit 0 Bob provides to OT two 0-es and one 1 (the correct majority
values and complement for minority values)

– Alice and Bob run OT for each input bit (to majority gate) of Bob

Encoded Circuit Construction

Each input wire at level zero is replaced by a majority gate

Secure Two-Party Computation with

Offline TTP in Malicious Setting

• Alice runs OT with Bob for each majority gate

– E.g., three inputs to majority gate

– Bob requests two bits that encode the value of its

real input and requests one complement bit

• If Alice encoded incorrectly either bit this is
detected, yet Bob’s input is kept secret

Secure Two Party Computation

Against Malicious Adversaries

Fair Two Party Computation

• Alice has input x and Bob has input y and they wish
to evaluate a common function f on their inputs, s.t.
– Alice receives f1(x,y) and Bob receives f2(x,y)

– Or both receive failure

• Given a protocol ΠG to implement g(x,y)=(z,·) with
output z at Alice only, construct a fair protocol ΠF

to implement f using an offline trusted third party
TTP

Fair Two Party Computation

Secure Fair Validated Computing

• Alice’s input may be a program

• Validate the input of Alice to prevent execution
of malicious program

– e.g., exposing input of Bob

• Construct practical validated computing using
the protocols presented before

