
A Signature Scheme for
Distributed Executions based on

Macro-Dataflow Analysis

S. Varrette, B. Bertholon and P. Bouvry
University of Luxembourg

<Firstname.Name@uni.lu>

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

mailto:Firstname.Name@uni.lu
mailto:Firstname.Name@uni.lu

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Summary
• Context & Motivation

• Related work

• Checkable Signature of distributed execution flow

‣ offline fingerprint generation

‣ online signature generation & verification

• Implemention & experimentations

• Conclusion

2

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Context

3

• Execution over a large-scale distributed platform

‣ Computing grid, desktop grid, Cloud

- heterogeneous (processor, network ...)

- dynamic (failures, reservations ...)

• Bad things happens

‣ [D]DoS, malware, trojan horse, vulnerability exploit etc.

- Crash, buffer overflows, machine-code injection

• Global Purpose: ensure execution integrity

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

• [Parallel] program P executed over M

‣ single machine, grid etc.

• Abstract representation of the
distributed execution of P

‣ Bipartite DAG

‣

• execution of T in P unfold G(T)

• the set of all G(T) characterize G

Execution model

4

task

s1

f1

e1

f5

e2

f4

f3
f2

e3
e4

s2Outputs

Inputs

G = (V, E)

V = Vt ∪ Vd

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Distributed execution & dataflow graphs
• Permits to handle various class of fault

‣ crash-fault: efficient checkpoint/rollback [CCK:BesseronGautier08]

‣ cheating-fault: handle task forgery/result falsification

- efficient detection on FJ/recursive programs [Varrette07]

- avoid full program duplication yet costly in general

‣ flow-fault: result of malicious code injection

- general manifestation of cheating faults

5

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Distributed execution & dataflow graphs
• Permits to handle various class of fault

‣ crash-fault: efficient checkpoint/rollback [CCK:BesseronGautier08]

‣ cheating-fault: handle task forgery/result falsification

- efficient detection on FJ/recursive programs [Varrette07]

- avoid full program duplication yet costly in general

‣ flow-fault: result of malicious code injection

- general manifestation of cheating faults

5

⇒ In this talk: flow-fault detection in distributed computations

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

• prior to a remote execution

‣ Static analysis/malware fingerprint detection [Christodorecu&al.05]

‣ Proof Carrying Code (PCC) [NeculaLee97]

‣ Control-flow checking at the assembly level [Abel05]

Related work

6

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

• prior to a remote execution

‣ Static analysis/malware fingerprint detection [Christodorecu&al.05]

‣ Proof Carrying Code (PCC) [NeculaLee97]

‣ Control-flow checking at the assembly level [Abel05]

Related work

6

⇒ does not cover dynamic attacks in distributed environment

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Related work (2)

• Control-flow integrity on sequential execution

‣ Operate at the assembly level

• include result-checking [Castro&al06]

• with graphs (node∼block) & XOR signature [Oh&al02]

7

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Related work (2)

• Control-flow integrity on sequential execution

‣ Operate at the assembly level

• include result-checking [Castro&al06]

• with graphs (node∼block) & XOR signature [Oh&al02]

7

⇒ extension at middleware level to distributed computation

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Fault model

8

composes the program P unfold the dataflow graph G(T). The set of all graphs
G(T) completely characterizes the full graph G.
In the rest of this paper, we assume the deterministic tasks re-execution hypothesis
H1 [28]: the tasks that compose P are deterministic. Therefore, any correct (i.e.
fault-free) execution of P over M for a given input can be represented by the same
macro dataflow graph G. Finally, for the sake of simplicity, we will often refer to G
as the execution of P whereas it is formally only a representation of it.

3.2 Fault model

In this paper, we are interested in flow faults defined as follows as soon as hypothesis
H1 holds.

Definition 1 (Flow fault). Let Gref denotes the (reference) fault-free execution
of P over M . Let G be the representation of an execution of P over M . Then G is
said faulty or victim of a flow fault if the graphs G and Gref differs i.e. G∩Gref "= ∅.
Otherwise, G is said correct.

In other words, G is faulty if there exists at least a task T for which G(T) "= Gref (T).
Whereas this definition (and furthermore the signature scheme proposed in this
paper) can be applied for any granularity of the graph, we will consider here the
smallest program unit of execution i.e. a task in G as a function of the source code.
It follows that a cheating fault is either a flow fault and/or a tampering at the value
associated to a data node in Vd (compared to one that would be obtained in Vref

d).
This characterizes the effect of the execution of a malicious code.

3.3 Analogy with signature schemes in other domains

As mentioned in §2, our approach reuses most of the concepts inherited from classical
signature schemes. For instance, the integrity of numeric documents can be checked
using a fingerprint that identify online the document’s content (typically using a
hash function such as SHA-1 or Whirlpool). It is then compared to a reference
fingerprint (computed and protected by the owner of the document) to detect any
tampering on the content.

3.4 Offline execution fingerprint by source code analysis

In our proposal, the reference fingerprint of P also known as its signature, is com-
puted offline by analysing the source code of the program (typically in C or C++).
More precisely, it consists in a set of non deterministic finite automata (NFA) A(T)
constructed for each task T that compose the program P. A path from the initial
state Begin to the final one End corresponds to a path in the execution flow of T to
reach a return instruction.

The states of the automaton are associ-

Error

\

tk

si

t1

t2

Fig. 2. A state in the automaton signature.

ated to the sub-tasks met in all possible
correct execution of T .

Transitions between a state si and
sj is authorized for a specific hash val-
ues H(sj) that will be detailed in §3.5.
We use a special transition value H(nil)
to refer to a legitimate move into the
automaton even if no specific instruc-

tion is supposed to be executed. Furthermore, once every legitimate transition from
a state si are evaluated, an implicit transition to the special state Error is added.

2 phases approach:
1.Offline fingerprint (reference signature) generation
2.Online signature generation & verification

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Offline fingerprint
• Based on source code analysis (C/C++) (extends CFG)

• For each task T (∼function): build a NFA

‣ Path Begin→End = valid flow

‣ state = sub-task called in T

‣ transition si→sj = tj = H(sj)

- derived from the graph unfold

- Special transition H(nil)

- implicit transition ‘\’ to the Error state

9

Error

\

tk

si

t1

t2

AT

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Offline fingerprint
• Structure of control impact on the fingerprint

10

H(nil)

 f(...)
}

if(...) {
 f(...)
} else {
 g(...)
}

 f(...)
}

while(...){
 f(...)
}

for(...) {
 f(...)
do {

} while(...)

H(f)

f(...) Error

H(f)

f(...) Error

H(f)

f(...) Error H(f) f(...)

Error

H(nil)

H(nil)

g(...)

H(f)

H(nil)

H(f)

H(nil)

H(nil) H(f)

H(nil)

if(...) {

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

• Once all are generated:

• optimization phase

‣ accelerate future online
verification for long path

‣ transition values derived
from intermediate values

‣ not mandatory

Offline fingerprint

11

End

Begin

End

Begin

H(H(f1),H(f2),. . . ,H(fn))

f2

f1

fn

f1, f2, . . . , fn

f2

f1

fn

H(fn)

H(f1)
H(f1)

H(f2) H(f2)

H(fn)

AT

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Begin

End

H(f2)

f2 f2

f3

Af1

H(f3)

H(f2)

Fingerprint example

12

void f1 (int n) {
if (...) {

f2(n) ;
return;

}
f2(n−2);
f3 ();

}

Begin

End

H(f2)

f2 f2

f3

Af1

H(f3)

H(f2)

Fig. 5. Illustration of the non-deterministic aspect of automaton signatures.

Such ”conflicts” are solved in the same way Generalized LR parsers handle this
kind of issues: at parsing time, we keep in memory all possible paths to drop after-
wards those leading to impossible cases [16].

3.5 Online signature verification

Hash value construction. The execution of a task T is accompanied with the
computation of its hash value defined as follows.

Definition 2 (Flow hash). Let G represents an execution of P over M . Let T ∈
Vt. The flow hash associated to the execution of T is defined by

H(T) = (prototype,flow detail)

In this definition, prototype details the function prototype i.e. the function name
together with the typed arguments associated to the function (input, output and
return type).
At execution time, this information is given by the string __PRETTY_FUNCTION__ for
instance. flow detail corresponds to information about the executed flow for the
task T considered. In practice, it consists in a view of the dataflow graph unfold for
the correct execution of task T i.e. Gref (T). In the context of this paper, it consists
in the information gathered during the full graph traversal (in the sequential order):
the prototype of the sub-tasks executed over this path are collected to form what
will be the flow detail part of the hash value. This is illustrated in figure 6.

f

int int

int

 int c = g(a);
 int d = h(a,b);

}

int f(int a, int b){

 return h(c,d);

(sequential execution order)

graph traversing

int int

h

int

g

h

int

int

d

Begin

End

int f(int, int)

prototype

dataflow graph unfolding

Execution

a b

c

ba

H(g)
H(g),H(h)

H(g),H(h),H(h)

int f(int, int)

H(H(g),H(h),H(h))

H(nil)

H(nil)

signature automaton for f
generated from Gref(f)

h

g

h

g,h,h

Af

H(g)

H(h)

H(h)

flow detail: G(f)

Fig. 6. Elements of the hash value relative to the execution of a task f . For reference, the
signature automaton of f is given.

• Demonstrate the non-deterministic
aspect of

‣ conflict handled as GLR parser do

• No optimization operated here

Af1

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

• prototype: function signature (C sense)

‣ Ex: see __PRETTY_FUNCTION__

• flow_detail: summary of the execution flow of T

‣ data-flow graph unfolded at execution of T

‣ should correspond to

Hash value construction

13

void f1 (int n) {
if (...) {

f2(n) ;
return;

}
f2(n−2);
f3 ();

}

Begin

End

H(f2)

f2 f2

f3

Af1

H(f3)

H(f2)

Fig. 5. Illustration of the non-deterministic aspect of automaton signatures.

Such ”conflicts” are solved in the same way Generalized LR parsers handle this
kind of issues: at parsing time, we keep in memory all possible paths to drop after-
wards those leading to impossible cases [16].

3.5 Online signature verification

Hash value construction. The execution of a task T is accompanied with the
computation of its hash value defined as follows.

Definition 2 (Flow hash). Let G represents an execution of P over M . Let T ∈
Vt. The flow hash associated to the execution of T is defined by

H(T) = (prototype,flow detail)

In this definition, prototype details the function prototype i.e. the function name
together with the typed arguments associated to the function (input, output and
return type).
At execution time, this information is given by the string __PRETTY_FUNCTION__ for
instance. flow detail corresponds to information about the executed flow for the
task T considered. In practice, it consists in a view of the dataflow graph unfold for
the correct execution of task T i.e. Gref (T). In the context of this paper, it consists
in the information gathered during the full graph traversal (in the sequential order):
the prototype of the sub-tasks executed over this path are collected to form what
will be the flow detail part of the hash value. This is illustrated in figure 6.

f

int int

int

 int c = g(a);
 int d = h(a,b);

}

int f(int a, int b){

 return h(c,d);

(sequential execution order)

graph traversing

int int

h

int

g

h

int

int

d

Begin

End

int f(int, int)

prototype

dataflow graph unfolding

Execution

a b

c

ba

H(g)
H(g),H(h)

H(g),H(h),H(h)

int f(int, int)

H(H(g),H(h),H(h))

H(nil)

H(nil)

signature automaton for f
generated from Gref(f)

h

g

h

g,h,h

Af

H(g)

H(h)

H(h)

flow detail: G(f)

Fig. 6. Elements of the hash value relative to the execution of a task f . For reference, the
signature automaton of f is given.

Gref (T)

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Dynamic hash building

14

f

int int

int

 int c = g(a);
 int d = h(a,b);

}

int f(int a, int b){

 return h(c,d);

(sequential execution order)
graph traversing

int int

h

int

g

h

int

int
d

Begin

End

int f(int, int)

prototype

dataflow graph unfolding
Execution

a b

c

ba

H(g)
H(g),H(h)

H(g),H(h),H(h)

int f(int, int)

H(H(g),H(h),H(h))

H(nil)

H(nil)

signature automaton for f
generated from Gref(f)

h

g

h

g,h,h

Af

H(g)

H(h)

H(h)

flow detail: G(f)

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Execution engine

15

• Hypothesis: TRUSTABLE execution engine

‣ dynamic construction of the macro-dataflow graph

‣ online dynamic task scheduling by work stealing

‣ Execution agents spread on the resources of the
[distributed] computing platform

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

• Fully distributed & recursive process

‣ Agent/Process P responsible to execute f (called in F)

‣ f composed by sub-tasks f1,...,fn / fi executed on Pi

- the Pi may be different processors

- after execution of fi : Pi returns H(fi) to P which check:

• H(fi).prototype is correct (later used to feed H(f))
• H(fi).flow_detail permits to reach state End in

- after execution of all fi and successful signature verification:
• H(f) = [Compress]H(f1).prototype||...||H(fn).prototype

Signature verification

16

Afi

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Signature verification illustrated

17

H(h)

f

int int

int

int int

h

int

g

h

int

int
d

int int

h

int
d

 int c = g(a);
 int d = h(a,b);

}

int f(int a, int b){

 return h(c,d);

int f(int, int)

dataflow graph unfolding
Execution

a b

c

ba

Execution agent onExecution agent on

a b

int t = f(14,27);

14 27

14 27
14 27

write result

11
11

Execution agent on
return computedP Pi Pj

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Verification process properties

18

Note that the graph traversal in the sequential order is done in linear time of
the number of tasks based on the native chaining operated at the implementation
level as it will be seen in §4.

Execution engine and signature verification. We assume a trustable exe-
cution engine based on dynamic macro dataflow graph construction. This graph is
used to schedule the tasks to be executed, typically with an online workstealing
algorithm as in kaapi– see §4.1. This engine uses agents spread on each computing
node. The signature verification is a fully distributed process. Let’s suppose the
processor P is responsible for running a function f called during the execution of
a function F . We describe here the dynamic recursive process that checks the flow
of f and returns the hash value H(f) to the agent linked to the execution of F .
The execution engine unfolds the graph G(f) associated to f (as it would normally
do). Let’s assume that this graph is composed by the sub-tasks f1, . . . , fn (in the
example proposed in figure 6, n = 3, f1 = g and f2 = f3 = h). Each of them have
to be executed, either on P or on another processor. Without loss of generality, we
assume the sub-tasks to be indexed in the sequential order of execution as defined in
f ’s source code. At the end of the execution of the sub-task fi on a processor Pi, the
hash value H(fi) is returned from Pi to P , the later being responsible for checking
it. This verification is based on fi’s automaton Afi and involves two phases:

1. checking that H(fi).prototype matches the prototype signature of fi and use
this value to feed H(f).f low detail (see below);

2. ensuring that the path H(fi).f low detail permits to reach the End state of Afi .

Whenever one of those conditions does not hold, a flow fault is detected as demon-
strated in proposition 2. Otherwise, no flow fault intervened in any of fi’s executions
so the hash value H(f) can be computed with the two elements mentioned in the
definition 2:

1. the effective prototype of f (for instance using the __PRETTY_FUNCTION__ string)
2. the flow summary of f ’s execution which has been filled during the successive

verifications of the sub-tasks {f1, . . . , fn} as the sequence:

H(f).f low detail = H(f1).prototype, . . . , H(fn).prototype

Eventually, H(f).f low detail does not correspond to this potentially long se-
quence but to a compressed version.

In all cases, the hash value H(f) is returned to the agent responsible for the
execution of the function F (which again can detect flow faults that may have
happened during the execution of f). As it can be seen, the full verification process
is fully distributed and permits to reach “leaf” functions for which the hash value is
limited to the only prototype. Furthermore, the verification process ends in a finite
time as stated in the proposition 1.

Proposition 1. As soon as the execution of the program P ends, the verification
process ends in a finite time.

Proof. If the program P ends, then the macro dataflow G representing the execution
of P is composed by a finite number of tasks. Consequently, a finite number of
dataflow graphs have be unfolded and each of them is associated with the verification
of a single signature automaton. Furthermore, each automaton owns a finite number
of states and checking a signature is linear in the number of states on a critical path.
it follows that the verification process of P ends in a finite time. !

The detection of flow faults results from the proposition 2.

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Verification process properties

18

Note that the graph traversal in the sequential order is done in linear time of
the number of tasks based on the native chaining operated at the implementation
level as it will be seen in §4.

Execution engine and signature verification. We assume a trustable exe-
cution engine based on dynamic macro dataflow graph construction. This graph is
used to schedule the tasks to be executed, typically with an online workstealing
algorithm as in kaapi– see §4.1. This engine uses agents spread on each computing
node. The signature verification is a fully distributed process. Let’s suppose the
processor P is responsible for running a function f called during the execution of
a function F . We describe here the dynamic recursive process that checks the flow
of f and returns the hash value H(f) to the agent linked to the execution of F .
The execution engine unfolds the graph G(f) associated to f (as it would normally
do). Let’s assume that this graph is composed by the sub-tasks f1, . . . , fn (in the
example proposed in figure 6, n = 3, f1 = g and f2 = f3 = h). Each of them have
to be executed, either on P or on another processor. Without loss of generality, we
assume the sub-tasks to be indexed in the sequential order of execution as defined in
f ’s source code. At the end of the execution of the sub-task fi on a processor Pi, the
hash value H(fi) is returned from Pi to P , the later being responsible for checking
it. This verification is based on fi’s automaton Afi and involves two phases:

1. checking that H(fi).prototype matches the prototype signature of fi and use
this value to feed H(f).f low detail (see below);

2. ensuring that the path H(fi).f low detail permits to reach the End state of Afi .

Whenever one of those conditions does not hold, a flow fault is detected as demon-
strated in proposition 2. Otherwise, no flow fault intervened in any of fi’s executions
so the hash value H(f) can be computed with the two elements mentioned in the
definition 2:

1. the effective prototype of f (for instance using the __PRETTY_FUNCTION__ string)
2. the flow summary of f ’s execution which has been filled during the successive

verifications of the sub-tasks {f1, . . . , fn} as the sequence:

H(f).f low detail = H(f1).prototype, . . . , H(fn).prototype

Eventually, H(f).f low detail does not correspond to this potentially long se-
quence but to a compressed version.

In all cases, the hash value H(f) is returned to the agent responsible for the
execution of the function F (which again can detect flow faults that may have
happened during the execution of f). As it can be seen, the full verification process
is fully distributed and permits to reach “leaf” functions for which the hash value is
limited to the only prototype. Furthermore, the verification process ends in a finite
time as stated in the proposition 1.

Proposition 1. As soon as the execution of the program P ends, the verification
process ends in a finite time.

Proof. If the program P ends, then the macro dataflow G representing the execution
of P is composed by a finite number of tasks. Consequently, a finite number of
dataflow graphs have be unfolded and each of them is associated with the verification
of a single signature automaton. Furthermore, each automaton owns a finite number
of states and checking a signature is linear in the number of states on a critical path.
it follows that the verification process of P ends in a finite time. !

The detection of flow faults results from the proposition 2.

⇒ any flow fault is detected assuming trustable agents

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Implementation
• Based on Kaapi http://kaapi.gforge.inria.fr

‣ C++ middleware library for distributed computing

‣ Build dynamic macro-dataflow graph

‣ High level interface with global address space

- Data (Shared<...>): declares an object in the global space

- Tasks (Fork<...>): declares a new [concurrent] task

- Access mode given by the task (read, write, exclusive etc.)

19

http://kaapi.gforge.inria.fr
http://kaapi.gforge.inria.fr

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Athapascan interface of Kaapi

20

– the Fork keyword creates a new task that may be executed in concurrence with
other tasks.

An example of the use of this programming interface is proposed in the listing 1.1.
We will use this program to illustrate the implementation of the signature scheme.
The kaapi low level interface allows to build the macro dataflow graph between
tasks during the execution of Athapascan program. This interface defines several
objects. A Closure object represents a function call (i.e. a task T) with a state. An
Access object represents the binding of an formal parameter in the global memory.
All objects are pushed in a stack, called Frame, which is associated to each control
flow, i.e. a dataflow graph G(T) for a task T . Finally, Closure, Access and Frame
objects are uniquely identified over the network. This will help us to determine the
process responsible for the verification of a given task.
The execution of a kaapi program on a distributed platform is done by a dynamic
set of processes, one per multi-processor, communicating through a network. These
are the execution agents mentioned in §3.5 who will be also responsible for signature
checking tasks. Each agent has several threads of control to execute tasks. At de-
ployment step, one of the agent is designed to be the leader which starts the thread
that executes the main task. It is therefore the leader that will deliver a potential
certification of the correct execution.

Listing 1.1. Programming a naive Fibonacci algorithm with the Athapascan inter-
face of kaapi (simplified view).
#include <athapascan−1>

int Fiboseq(int n); // Sequential version

void Sum(Shared w<int> res, Shared r<int> res1, Shared r<int> res2) { res = res1+res2; }

void Fibo(Shared w<int> res, int n, int threshold int n) {
if (n < threshold)

res = Fiboseq(n);
else {

Shared<int> res1;
Shared<int> res2;
/∗ the Fork keyword is used to spawn new task ∗/
Fork<Fibo>(res1, n−1, threshold);
Fork<Fibo>(res2, n−2, threshold);
Fork<Sum>(res, res1, res2);

}
}

4.2 Implementation details of the proposed signature scheme

As precised in the section 3, our approach involves two different phases, one off-line
to generate the code fingerprint, the other on-line to check the signature in a fully
distributed process.

Off-line fingerprint generation. As mentioned in §3.4, a set of Non-deterministic
Finite Automata (NFA) A(T) are generated off-line for each task T that compose
the source code of the kaapi program.
In this context, we developed a dedicated software that parse the preprocessed
code of the program (obtained via the GNU Compiler Collection [24] and the
command g++ -E) with the C++ parser Elsa [22] and the Generalized LR parser
Elkhound [16]. From the parse tree it creates the signature automaton for each
function (as describe in §3.4). NFAs are stored in encrypted files under the dot
format [8]. They are read at run time by the kaapi agents (who hold the key to de-
crypt them) to operate the signature verification process. The dot format simplified
the automatic generation of a human-readable view of the signatures.

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

• Permit to generate the NFA ∀T in P

• Analyse Kaapi source code

‣ exploit preprocessed code by GCC

‣ C++ parser Elsa & Generalized LR parser Elkhound

‣ NFA stored encrypted in DOT format

‣ decrypted at runtime for signature verification

Offline fingerprint generator

21

AT

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Offline fingerprint
in action

22

An example of such an output is
proposed in Figure 7 by applying
this process to the Fibonacci pro-
gram with the main function defined
as follows:

int main() {
...
for (int i=0; i < MAX; i++)

Fork<Fibo>(res, n, threshold);
...

}

!"#$ %#&'

()! %#&'*(+,

-')./+

0+-1#$"1#'$

$#2 %#&'

34%#&'5

-')./+ -')./+

$#2

34%#&'5

-')./+

%#&'*(+,

34%#&'6-+,5

%#&'

34%#&'5

0+-1#$"1#'$

$#2

%#&'

34%#&'5

()!

34()!5

$#2

0+-1#$"1#'$

$#2

0+-1#$"1#'$

$#2

Fig. 7. Signature automata generated for the Fi-
bonacci program.

On-line signature verification. The flow integrity control is implemented using
a dedicated kaapi Closure object called TaskVerification. This checking task
is added at the end of each frame and is responsible for operating the signature
verification of the associated task. Following the mechanism described in §3.5, this
task communicates with the TaskVerification closures beneath and above it us-
ing a kaapi Shared variable verif to (1) collect hash values from the agent that
executed the sub-tasks i.e. the Closure objects present in the frame and (2) return
the hash value to the frame at the upper level. The effect on the macro dataflow of
the program is highlighted in Figure 8.

!

"#$%

&'()*'%+,

()*

!

"#$%

&'()*'%+,

()*

!-. &'()*'%+, !-/ &'()*'%+,

"#$% "#$%

()*

012

()*

!-. &'()*'%+, !-/ &'()*'%+,

"#$% "#$%

()*

012

()*3)(#4

56*78)(#9:6&#%!

3)(#43)(#4

56*78)(#9:6&#%! 56*78)(#9:6&#%!

56*78)(#9:6&#%!

Fig. 8. Data-flow graph without (left) and with (right) the Taskverification function
responsible for checking the execution flow against the appropriate signature automaton.

Furthermore, the Taskverification closure check the returned hash value of each
Closure objects in his frame. As stated in §3.5, this has to be done in the sequential
order. This is very simple to operate as kaapi chains the Closure objects in a
frame in this precise order. Moreover, and contrary to normal Closure in kaapi, the
TaskVerification task cannot be stolen by other agents, so as to keep the signature
process local to the agent responsible for the execution of the frame checked.

– the Fork keyword creates a new task that may be executed in concurrence with
other tasks.

An example of the use of this programming interface is proposed in the listing 1.1.
We will use this program to illustrate the implementation of the signature scheme.
The kaapi low level interface allows to build the macro dataflow graph between
tasks during the execution of Athapascan program. This interface defines several
objects. A Closure object represents a function call (i.e. a task T) with a state. An
Access object represents the binding of an formal parameter in the global memory.
All objects are pushed in a stack, called Frame, which is associated to each control
flow, i.e. a dataflow graph G(T) for a task T . Finally, Closure, Access and Frame
objects are uniquely identified over the network. This will help us to determine the
process responsible for the verification of a given task.
The execution of a kaapi program on a distributed platform is done by a dynamic
set of processes, one per multi-processor, communicating through a network. These
are the execution agents mentioned in §3.5 who will be also responsible for signature
checking tasks. Each agent has several threads of control to execute tasks. At de-
ployment step, one of the agent is designed to be the leader which starts the thread
that executes the main task. It is therefore the leader that will deliver a potential
certification of the correct execution.

Listing 1.1. Programming a naive Fibonacci algorithm with the Athapascan inter-
face of kaapi (simplified view).
#include <athapascan−1>

int Fiboseq(int n); // Sequential version

void Sum(Shared w<int> res, Shared r<int> res1, Shared r<int> res2) { res = res1+res2; }

void Fibo(Shared w<int> res, int n, int threshold int n) {
if (n < threshold)

res = Fiboseq(n);
else {

Shared<int> res1;
Shared<int> res2;
/∗ the Fork keyword is used to spawn new task ∗/
Fork<Fibo>(res1, n−1, threshold);
Fork<Fibo>(res2, n−2, threshold);
Fork<Sum>(res, res1, res2);

}
}

4.2 Implementation details of the proposed signature scheme

As precised in the section 3, our approach involves two different phases, one off-line
to generate the code fingerprint, the other on-line to check the signature in a fully
distributed process.

Off-line fingerprint generation. As mentioned in §3.4, a set of Non-deterministic
Finite Automata (NFA) A(T) are generated off-line for each task T that compose
the source code of the kaapi program.
In this context, we developed a dedicated software that parse the preprocessed
code of the program (obtained via the GNU Compiler Collection [24] and the
command g++ -E) with the C++ parser Elsa [22] and the Generalized LR parser
Elkhound [16]. From the parse tree it creates the signature automaton for each
function (as describe in §3.4). NFAs are stored in encrypted files under the dot
format [8]. They are read at run time by the kaapi agents (who hold the key to de-
crypt them) to operate the signature verification process. The dot format simplified
the automatic generation of a human-readable view of the signatures.

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Online signature verification
• Add a new internal task to Kaapi execution engine

‣ TaskVerification - responsible to:

- check sub-tasks execution flow (using associated NFAs)

- build the hash (in the verif shared data) to be
returned to the mother task handler

• Fully transparent to the user

‣ extension of the middleware library

23

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Online signature verification

24

• Affect the data-flow graph unfolded

‣ Example:

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Experimental validation
• Validation on one of the clusters of UL

‣ 16 computing nodes, Intel Dual Core 3.2Ghz, 4G RAM

• Two applications evaluated:

1. Naive fibonacci

- illustrate massive task creation (worst case for us)
- granularity controlled by the threshold parameter

2. N-Queens

- parallel implementation based on sequential code by
Takaken

25

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Experiments #1: Fibo(39)

26

Signature checking activated, 2 cores (C1)
Signature checking activated, 4 cores (C1)
Signature checking disabled, 2 cores (C1)
Signature checking disabled, 4 cores (C1)

 20

 25

 30

 35

 40

n

 0
 5

 10
 15

 20
 25

 30
Threshold

 0

 50

 100

 150

Time (s)

 25

 30

 35

 40

 0
 5

 10
 15

 20
 25

 30

 1

 2

 3

 4

 5

 6

Overhead ratio
 (4 cores, C1)

n
Threshold

Overhead ratio
 (4 cores, C1)

Finally, it is important to notice that the approach is fully transparent to the
user as the implementation details provided in this paragraph have been applied at
the middleware level.

5 Experimental Validation

The proposed signature scheme has been validated on two typical applications (Fi-
bonacci and N-Queens). Version 2.4 of the kaapi library have been used for those
experiments which have been conducted on the clusters of the University of Lux-
embourg. Each computing node can have one of the following configurations:

C1: Intel Dual Core Pentium D, 3.2 GHz and 4 GBytes of main memory (2 cores)
C2: Two Intel Xeon Quad-Core, 2.0 GHz and 32 GBytes of main memory (8 cores)

5.1 Fibonacci computation.

A first set of experiments of the folk recursive Fibonacci number computation has
been executed based on the code provided in the listing 1.1. This benchmark pro-
gram demonstrates a configuration with massive task creation, which is the worst
configuration for our signature scheme as every new task created is associated with
a verification procedure. The granularity of the program is fully controlled by the
threshold parameter: a small value increases drastically the number of forked tasks,
letting the sequential ”leaf” functions of the data-flow graph (i.e. Fibosec tasks)
with little work to operate. On the contrary, bigger values for the threshold limits
the number of spawned tasks and makes the sequential functions longer, i.e. able
to cover the task creation process or, in our case, the signature checking operation.

This aspect is illustrated in Figure 9 where the Fibonacci program is evaluated
for different values of the parameters n and threshold on 1 or 2 computing nodes
(each in configuration C1).

Signature checking activated, 2 cores (C1)
Signature checking activated, 4 cores (C1)
Signature checking disabled, 2 cores (C1)
Signature checking disabled, 4 cores (C1)

 20

 25

 30

 35

 40

n

 0
 5

 10
 15

 20
 25

 30
Threshold

 0

 50

 100

 150

Time (s)

(a)

 25

 30

 35

 40

 0
 5

 10
 15

 20
 25

 30

 1

 2

 3

 4

 5

 6

Overhead ratio
 (4 cores, C1)

n
Threshold

Overhead ratio
 (4 cores, C1)

(b)

Fig. 9. Overhead of the embedded signature checking process when executing the Fi-
bonacci program (a) absolute (b) relative (for configuration C1 and 4 cores).

Figure 9(a) displays the execution time and shows the overhead of activating the
signature verification, compared to classical executions where the verification mech-
anism is also embedded yet disabled. Figure 9(b) derives directly from the previous
evaluation and proposes an overview of the relative overhead computed by the for-
mula:

Roverhead =
Execution time with signature checking

Execution time without signature checking

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

• up to 5.5x overhead

‣ huge yet hold in unused
parameter area

• for a more realistic
threshold (0.5n):

‣ relatively low overhead

• scalable approach!

‣ Fibo(39)=108 tasks checked

27

Experiments #1: Fibo(39)

 1

 2

 3

 4

 5

 6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
o
v
e
rh

e
a
d

Threshold / n

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

• Speedup evaluation (threshold=20)

28

Experiments #1bis: Fibo(42)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10 12 14 16

T
im

e
 (

s)

Number of cores (configuration C2)

(1) Native Kaapi
(2) Kaapi with signature module, without checking

(3) Kaapi with signature module, with checking

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Experiment #2: N-Queens

29

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 4 6 8 10 12 14 16 18 20

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

T
im

e
 (

s)

R
a

tio

N (chess board size)

Signature checking activated
Signature checking disabled

Relative overhead

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Conclusion
• Signature scheme to detect flow faults in distributed

computations via macro data-flow analysis

‣ offline fingerprint generation by code analysis

‣ online distributed & recursive verification

‣ fully transparent to the user + working implementation

• Assumes trustable execution agents

‣ [Re-trust contribution] investigate way to get ride of this

30

Re-Trust 2009 Sept. 30th, Riva del Garda, Italy

Last word: conference future
• Mentioned by Yoram

‣ C. Collberg wanted to create a more formal conf.

‣ ReTrust2008: idea to join our effort on this issue

- also on board now: Yuan Gu (Cloackware), Paolo Falcarin (P.Torino)

• Current plan: Workshop at ACM Conference on Computer
and Communications Security (CCS) 2010

‣ Topic: Software protection and Secure computation

• Paper submission: April 2010 / Conf: Nov 2010

‣ A+ conference, kindly join the program committee !

31

