A Signature Scheme for
Distributed Executions based on
Macro-Dataflow Analysis

S.Varrette, B. Bertholon and P. Bouvry
University of Luxembourg

<Firstname.Name@uni.lu>

mailto:Firstname.Name@uni.lu
mailto:Firstname.Name@uni.lu

Context & Motivation

Related work

Checkable Signature of distributed execution flow

» offline fingerprint generation
» online sighature generation & verification
Implemention & experimentations

Conclusion

* Execution over a large-scale distributed platform

» Computing grid, desktop grid, Cloud
- heterogeneous (processor, network ...)

- dynamic (failures, reservations ...)

* Bad things happens
» [D]DoS, malware, trojan horse, vulnerability exploit etc.

- Crash, buffer overflows, machine-code injection

* Global Purpose: ensure execution integrity

Outputs

* [Parallel] program P executed over M

» single machine, grid etc.

* Abstract representation of the
distributed execution of P

» Bipartite DAG G = (V,&
P V=V, UVy
e execution of T in P unfold G(T)

* the set of all G(T) characterize G

e
T

R
.N‘".).' .' o

Distributed execution & dataflow graphs

* Permits to handle various class of fault
» crash-fault: efficient checkpoint/rollback ccksesseronGautieros;
» cheating-fault: handle task forgery/result falsification
- efficient detection on F)/recursive programs [varretteo7]
- avoid full program duplication yet costly in general
p flow-fault: result of malicious code injection

- general manifestation of cheating faults

e
T

R
.N‘".).' .' o

Distributed execution & dataflow graphs

* Permits to handle various class of fault
» crash-fault: efficient checkpoint/rollback ccksesseronGautieros;
» cheating-fault: handle task forgery/result falsification
- efficient detection on F)/recursive programs [varretteo7]
- avoid full program duplication yet costly in general
p flow-fault: result of malicious code injection

- general manifestation of cheating faults

= In this talk: flow-fault detection in distributed computations

lated work

- -

®* prior to a remote execution
p Static analysis/malware fingerprint detection (curiswodorecusalos

> Proof Carrying Code (PCC) [NeculaLee97]

» Control-flow checking at the assembly level (o

Related work

®* prior to a remote execution

p Static analysis/malware fingerprint detection (curiswodorecusalos
> Proof Carrying Code (PCC) [NeculaLee97]

» Control-flow checking at the assembly level (o

= does not cover dynamic attacks in distributed environment

 Control-flow integrity on sequential execution

» Operate at the assembly level
* include result-checking [Castro&al06]

e with graphs (node~block) & XOR signature onsaio;

Related work (2)

 Control-flow integrity on sequential execution

» Operate at the assembly level
* include result-checking [Castro&al06]

e with graphs (node~block) & XOR signature onsaio;

= extension at middleware level to distributed computation

Definition 1 (Flow fault). Let G/ denotes the (reference) fault-free execution
of P over M. Let G be the representation of an execution of P over M. Then G 1is
said faulty or victim of a flow fault if the graphs G and G™¢! differs i.e. GNGT¢T #£ .

Otherwise, G 1s said correct.

2 phases approach:

| .Offline fingerprint (reference signature) generation
2.0nline signature generation & verification

* Based on source code analysis (C/C++) (extends CFG)
* For each task T (~function): build a NFA At

» Path Begin—End = valid flow
p state = sub-task called in T

p transition si-s; = tj = H(sj)

- derived from the graph unfold

- Special transition H(nil)

- implicit transition '\’ to the

e Structure of control impact on the fingerprint

for(...) {||while(...){
} f(...) f(...)

do {
f(...)
} while(...)

H(nil)

* Once all A7 are generated:

e optimization phase

4

accelerate future online
verification for long path

transition valugs derived
from intermediate values

not mandatory

void fl (int n) {

it () {
f2(n) ;

return;

}
f2(n—2);
£3 ();

t

e Demonstrate the non-deterministic
aspect of Ay,

» conflict handled as GLR parser do

* No optimization operated here

Definition 2 (Flow hash). Let G represents an execution of P over M. LetT €
Vi. The flow hash associated to the execution of T' is defined by

H(T) = (prototype, flow_detail)

* prototype: function signature (C sense)
» Ex:see PRETTY FUNCTION

* flow_detail: summary of the execution flow of T

» data-flow graph unfolded at execution of T

» should correspond to G/ (T

" Dynamic hash building

() > graph traversing

int f(int a, int b){ : :
int ¢ = g(a); (sequential execution order)

int d h(a,b);
return h(c,d);

As
int f(int, int)

g)

H(H(g).H(h) H(h))

g

int f(int, int)

Execution
dataflow graph unfolding

H(nil)

signature automaton for f
generated from G/ (f)

prototype H(g) Hh)H0)~

flow_detail: G(f)

| 4

e Hypothesis: TRUSTABLE execution engine
» dynamic construction of the macro-dataflow graph

» online dynamic task scheduling by work stealing

» Execution agents spread on the resources of the
[distributed] computing platform

Signature verification

* Fully distributed & recursive process

» Agent/Process P responsible to execute f (called in F)
» f composed by sub-tasks fi,...,fn / fi executed on P;
- the Pi may be different processors

- after execution of fi: Pi returns H(fi) to P which check:

e H(fi).prototype is correct (later used to feed H(f))
e H(fi).flow_detail permits to reach state End in Ay,

- after execution of all fi and successful signature verification:
e H(f) = [Compress]H(fi).prototypel|...||H(f,).prototype

|16

Signature verification illustrated

Execution agent on Execution agent on Execution agent on

P
int t = £(14,27);

int f(int, int)

Execution
dataflow graph unfolding

int f(int a, int b){ write result
int ¢ = g(a);
int d = h(a,b);
return h(c,d);

s

Verification process properties

Proposition 1. As soon as the execution of the program P ends, the verification
process ends in a finite time.

Proposition 2. Let G/ denotes the (reference) fault-free execution of P over

M. Let {Ap,,..., A, } denotes the set of automaton signatures elaborated from
the analysis of P’s source code. Let G be the representation of an execution of P

over M. Then G is faulty <= Ji € [1,n] such that the verification process of the
automaton signature Ay, ends in the Error state.

Verification process properties

Proposition 1. As soon as the execution of the program P ends, the verification
process ends in a finite time.

Proposition 2. Let G/ denotes the (reference) fault-free execution of P over

M. Let {Ap,,..., A, } denotes the set of automaton signatures elaborated from
the analysis of P’s source code. Let G be the representation of an execution of P

over M. Then G is faulty <= Ji € [1,n] such that the verification process of the
automaton signature Ay, ends in the Error state.

= any flow fault is detected assuming trustable agents

Implementation

e Based on Kaapi http://kaapi.gforge.inria.fr

p C++ middleware library for distributed computing
» Build dynamic macro-dataflow graph

» High level interface with global address space
- Data (shared<...>):declares an object in the global space
- Tasks (Fork<...>):declares a new [concurrent] task

- Access mode given by the task (read, write, exclusive etc.)

http://kaapi.gforge.inria.fr
http://kaapi.gforge.inria.fr

#include <athapascan—1>

int Fiboseq(int n); // Sequential version

void Sum(Shared w<int> res, Shared_r<int> resl, Shared_r<int> res2) { res = resl+res2; }

void Fibo(Shared w<int> res, int n, int threshold int n) {

if (n < threshold)
res = Fiboseq(n);

else {
Shared<int> resl;
Shared<int> res2;
/% the Fork keyword is used to spawn new task x/
Fork<Fibo>(resl, n—1, threshold);
Fork<Fibo>(res2, n—2, threshold);
Fork<Sum>(res, resl, res2);

* Permit to generate the NFA A7 vT in P

* Analyse Kaapi source code

» exploit preprocessed code by GCC

p C++ parser Elsa & Generalized LR parser Elkhound
» NFA stored encrypted in DOT format

» decrypted at runtime for signature verification

main Fibo

int ma,ln() { source source

i H(Fibo_seq) \H(Fibo)
for (int i=0; i < MAX; i++)
Fork<Fibo>(res, n, threshold);

1 i Fibo Seq
#include <athapascan—1>
destination
int Fiboseq(int n); // Sequential version -

void Sum(Shared w<int> res, Shared r<int> resl, Shared r<int> res2) { res = resl+res2;

void Fibo(Shared_w<int> res, int n, int threshold int n) { Sum Fibo Seq
if (n < threshold)
res = Fiboseq(n);
else {
Shared<int> resl;
Shared<int> res2;
/* the Fork keyword is used to spawn new task */
Fork<Fibo>(resl, n—1, threshold);

Fork<Fibo>(res2, n—2, threshold);
Fork<Sum> (res, resl, res2): destination destination destination

source source

* Add a new internal task to Kaapi execution engine

» TaskVerification - responsible to:
- check sub-tasks execution flow (using associated NFAs)

- build the hash (in the verif shared data) to be
returned to the mother task handler

e Fully transparent to the user

p extension of the middleware library

Online signature verification
e Affect the data-flow graph unfolded

n threshold threshold
» Example: A A
. .

threshold threshold threshold threshold

* Validation on one of the clusters of UL
» 16 computing nodes, Intel Dual Core 3.2Ghz, 4G RAM

* Two applications evaluated:

|. Naive fibonacci

- illustrate massive task creation (worst case for us)
- granularity controlled by the threshold parameter

2. N-Queens

- parallel implementation based on sequential code by
Takaken

25

Signature checking activated, 2 cores
Signature checking activated, 4 cores
Signature checking disabled, 2 cores
Signature checking disabled, 4 cores

Threshold

Execution time with signature checking

R r — ; . 1] .
overhead ™ pecution time without signature checking

Overhead ratio
(4 cores, C1)

Threshold

* up to 5.5x overhead

» huge yet hold in unused
parameter area

e for a more realistic
threshold (0.5n):

» relatively low overhead

e
S
o)
e
S
o
>
o
o

* scalable aPProaCh! R . o o
: Threshold /
» Fibo(39)=108 tasks checked b

Experiments #|bis: Fibo(42)

. Speedup evaluatlon (threshold 20)

(1) Native Kaap| ——
(2) Kaapi with signature module, without checking -~
(3) Kaapi with signature module, with checking -

10
Number of cores (configuration C2)

xeiment H2: N-Qée

10000 ¢ . . . — I | 130
- Signature checking activated ——

: ™ Signature checking disabled 120

1000 | P Relative overhead

P 110
100 | P 100

90
80
70
60
50
40
30
20
10

12
N (chess board size)

* Signature scheme to detect flow faults in distributed
computations via macro data-flow analysis

p offline fingerprint generation by code analysis

» online distributed & recursive verification

p fully transparent to the user + working implementation
* Assumes trustable execution agents

P [Re-trust contribution] investigate way to get ride of this

* Mentioned by Yoram
p C.Collberg wanted to create a more formal conf.

» ReTrust2008: idea to join our effort on this issue

- also on board now: Yuan Gu (Cloackware), Paolo Falcarin (PTorino)

e Current plan:Workshop at ACM Conference on Computer
and Communications Security (CCS) 2010

» Topic: Software protection and Secure computation
 Paper submission: April 2010 / Conf: Nov 2010

» A+ conference, kindly join the program committee !

