
Second year review
WP2 overview

SW-based Method
Trento - October 17th, 2008

1

Goal

•To investigate software-only
methodologies for remote
entrusting implementation

2

Tasks

M0 M3 M6 M9 M12 M15 M18 M21 M24 M27 M30 M33 M36

T2.1T2.1

T2.2T2.2

T2.3T2.3

T2.4T2.4

T2.5T2.5

D2.3 D2.4

T2.6T2.6

3

Tasks

M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 ...
T2.2T2.2

T2.3T2.3

T2.4T2.4

T2.5T2.5

4

T2.6T2.6

Tasks

M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 ...
T2.2T2.2

T2.3T2.3

T2.4T2.4

T2.5T2.5

5

T2.6T2.6

Secure interlocking and
authenticity checking

•Definition of software techniques
to securely combine an application
with different protection and
authentication mechanisms

T2.2T2.2

6

Secure interlocking and
authenticity checking

•Remote Invariants Monitoring
(POLITO)

•Remote Control-Flow Checking
(POLITO)

•White-Box Remote Procedure Call
(UNITN,KUL)

•Barrier Slicing (UNITN)

T2.2T2.2

7

Secure interlocking and
authenticity checking

•Remote Invariants Monitoring
(POLITO)

•Remote Control-Flow Checking
(POLITO)

•White-Box Remote Procedure Call
(UNITN,KUL)

•Barrier Slicing

T2.2T2.2

8

Remote monitoring of program state, or Remote monitoring of program state, or
program execution flowprogram execution flow

Program traces sent from untrusted to Program traces sent from untrusted to
trusted nodetrusted node

Secure interlocking and
authenticity checking

•Remote Invariants Monitoring
(POLITO)

•Remote Control-Flow Checking
(POLITO)

•White-Box Remote Procedure Call
(UNITN, KUL)

•Barrier Slicing (UNITN)

T2.2T2.2

9

Program execution through an obfuscated Program execution through an obfuscated
virtual machine virtual machine

Analysis of the application becomes not Analysis of the application becomes not
possiblepossible

Secure interlocking and
authenticity checking

•Remote Invariants Monitoring
(POLITO)

•Remote Control-Flow Checking
(POLITO)

•White-Box Remote Procedure Call
(UNITN,KUL)

•Barrier Slicing (UNITN)

T2.2T2.2

10

Portions of the application executed on a Portions of the application executed on a
trusted node either local (smart card or trusted node either local (smart card or

secure hardware), or remotesecure hardware), or remote

Tasks

M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 ...
T2.2T2.2

T2.3T2.3

T2.4T2.4

T2.5T2.5

11

T2.6T2.6

Dynamic replacement for
increased tamper

resistance

•Investigation of innovative
methods exploiting the “time
dimension” to increase tamper
resistance

T2.3T2.3

12

Dynamic replacement for
increased tamper

resistance
•Remote Tamper-Resistance with

Continuous Replacement (UNITN,
POLITO, prof. Christian Collberg)

•Increased reverse engineering
complexity through continuous
replacement and mutant code
(POLITO)

•Orthogonal replacement (UNITN)

T2.3T2.3

13

Dynamic replacement for
increased tamper

resistance
•Remote Tamper-Resistance with

Continuous Replacement (UNITN,
POLITO, prof. Christian Collberg)

•Exploiting continuous replacement
to increase reverse engineering
complexity (POLITO)

•Orthogonal replacement (UNITN)

T2.3T2.3

14

Program divided into blocks sent from the Program divided into blocks sent from the
trusted node to the untrusted nodetrusted node to the untrusted node

• • The untrusted node never holds the complete The untrusted node never holds the complete
applicationapplication

• • Each block obfuscated with different transformations Each block obfuscated with different transformations
including introduction of corrupted blocksincluding introduction of corrupted blocks

Implementation deployed on Java codeImplementation deployed on Java code

Dynamic replacement for
increased tamper

resistance
•Remote Tamper-Resistance with

Continuous Replacement (UNITN,
POLITO, prof. Christian Collberg)

•Increased reverse engineering
complexity through continuous
replacement and mutant code
(POLITO)

•Orthogonal replacement (UNITN)

T2.3T2.3

15

Binary code split into sub-blocks sent from Binary code split into sub-blocks sent from
the trusted to the untrusted node and bound the trusted to the untrusted node and bound
into the application through code mutationsinto the application through code mutations

• • The untrusted node never holds the complete The untrusted node never holds the complete
applicationapplication

• • Each block dynamically relocated during a single Each block dynamically relocated during a single
execution and over different executions (memory layout execution and over different executions (memory layout

always different)always different)

Implementation deployed on x86 binary Implementation deployed on x86 binary
codecode

Dynamic replacement for
increased tamper

resistance
•Remote Tamper-Resistance with

Continuous Replacement (UNITN,
POLITO, prof. Christian Collberg)

•Exploiting continuous replacement
to increase reverse engineering
complexity (POLITO)

•Orthogonal replacement (UNITN)

T2.3T2.3

16

A theoretical model to build different A theoretical model to build different
versions of a program and/or a program versions of a program and/or a program
block in such a way that a given version block in such a way that a given version
does not provide information to reverse does not provide information to reverse

engineering future versionsengineering future versions

Tasks

M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 ...
T2.2T2.2

T2.3T2.3

T2.4T2.4

T2.5T2.5

17

T2.6T2.6

Increased reverse
engineering complexity for

software protection

•Definition of pure software
solutions to increase reverse
engineering complexity

T2.4T2.4

18

Increased reverse
engineering complexity for

software protection
•Crypto guards (KUL)

•Fuzzing (KUL)

•White-Box Cryptography (KUL)

•Obfuscation of Java byte code
(GEM)

•Obfuscation Techniques (KUL)

•SProT (KUL)

T2.4T2.4

19

Increased reverse
engineering complexity for

software protection•Crypto guards (KUL)

•Fuzzing (KUL)

•White-Box Cryptography (KUL)

•Obfuscation of Java byte code
(GEM)

•Obfuscation Techniques (KUL)

•Software Protection Tool - SProT
(KUL)

T2.4T2.4

20

A technique to protect software against A technique to protect software against
analysis and against tampering as wellanalysis and against tampering as well

Deployed on a binary level by using the Deployed on a binary level by using the
Diablo binary rewriterDiablo binary rewriter

Increased reverse
engineering complexity for

software protection•Crypto guards (KUL)

•Fuzzing (KUL)

•White-Box Cryptography (KUL)

•Obfuscation of Java byte code
(GEM)

•Obfuscation Techniques (KUL)

•Software Protection Tool - SProT
(KUL)

T2.4T2.4

21

Software testing technique Software testing technique

Submitting random or unexpected data to Submitting random or unexpected data to
an application and monitoring it for any an application and monitoring it for any

resulting errorresulting error

STILL IN A PRELIMINARY PHASESTILL IN A PRELIMINARY PHASE

Increased reverse
engineering complexity for

software protection•Crypto guards (KUL)

•Fuzzing (KUL)

•White-Box Cryptography (KUL)

•Obfuscation of Java byte code
(GEM)

•Obfuscation Techniques (KUL)

•Software Protection Tool - SProT
(KUL)

T2.4T2.4

22

Deep analysis of state-of-the-art in WBCDeep analysis of state-of-the-art in WBC

Proposal of a secure encryption scheme, Proposal of a secure encryption scheme,
designed to be white-boxingdesigned to be white-boxing

Increased reverse
engineering complexity for

software protection•Crypto guards (KUL)

•Fuzzing (KUL)

•White-Box Cryptography (KUL)

•Obfuscation of Java byte code
(GEM)

•Obfuscation Techniques (KUL)

•SProT (KUL)

T2.4T2.4

23

Java byte code obfuscationJava byte code obfuscation

• • Layout obfuscation: debug information and identifier Layout obfuscation: debug information and identifier
names removed • Data obfuscation: the way data is stored names removed • Data obfuscation: the way data is stored
and encoded changed• Control flow obfuscation: the way and encoded changed• Control flow obfuscation: the way

the program runs changed (e.g., method invocation, loops, the program runs changed (e.g., method invocation, loops,
branches)• Preventive obfuscation: identification of branches)• Preventive obfuscation: identification of

weakness in current de-obfuscation and de-compilers to weakness in current de-obfuscation and de-compilers to
make them crash or failmake them crash or fail

Increased reverse
engineering complexity for

software protection•Crypto guards (KUL)

•Fuzzing (KUL)

•White-Box Cryptography (KUL)

•Obfuscation of Java byte code
(GEM)

•Obfuscation Techniques (KUL)

•Software Protection Tool - SProT
(KUL)

T2.4T2.4

24

Class containing control flow obfuscation Class containing control flow obfuscation
techniques such as control flow graph techniques such as control flow graph

flattening and opaque predicatesflattening and opaque predicates

Implemented in Txl a code transformation Implemented in Txl a code transformation
languagelanguage

Increased reverse
engineering complexity for

software protection•Crypto guards (KUL)

•Fuzzing (KUL)

•White-Box Cryptography (KUL)

•Obfuscation of Java byte code
(GEM)

•Obfuscation Techniques (KUL)

•Software Protection Tool - SProT
(KUL)

T2.4T2.4

25

Several analysis resistance and tamper Several analysis resistance and tamper
resistance techniques integrated into a resistance techniques integrated into a

single toolsingle tool

• • WBC be means of white-box DES and white-box AES • WBC be means of white-box DES and white-box AES •
Obfuscation techniques • Crypto GuardsObfuscation techniques • Crypto Guards

Tasks

M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 ...
T2.2T2.2

T2.3T2.3

T2.4T2.4

T2.5T2.5

26

T2.6T2.6

Design of
entrusting protocol

•Cryptographic and
synchronization concerns of
the communication protocol
employed between trusted
and untrusted node

T2.5T2.5

27

Design of
entrusting protocol

•Preliminary design of the
entrusting protocol (SPIIRAS)

•Analysis of the entrusting
protocol (SPIIRAS)

T2.5T2.5

28

Design of
entrusting protocol

•Definition of a preliminary
entrusting protocol

•Analysis of the entrusting
protocol

T2.5T2.5

29

Broad analysis of existing protocol formal Broad analysis of existing protocol formal
design and verification means design and verification means

Selection of two verification tools AVISPA Selection of two verification tools AVISPA
and Isabelleand Isabelle

Verification of the correctness of the Verification of the correctness of the
entrusting protocolentrusting protocol

Tasks

M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 ...
T2.2T2.2

T2.3T2.3

T2.4T2.4

T2.5T2.5

30

T2.6T2.6

T2.6T2.6

Proof of concepts
•Preliminary discussions

about final proof of concept
application:

- Gemalto IP Multimedia
Subsystem (IMS) server
platform

- On line games

- VoIP

- 31

Proof of concepts

•Proof of concept meeting (Trento

May 29th 2008):

- On line gaming application as
target
- Candidate game: car race game

- Definition of basic requirements: distributed
application, DRM, licensing

32

T2.6T2.6

Conclusions

•All tasks in a healthy state

•Focus during the last year of the
project on:

- Entrusting protocol (T2.5)

- Proof of concept (T2.6)

33

