RE-TRUST "Kick-off" Workshop on "Run-time Software Integrity and Authenticity"

18-19 - September - 2006 Trento, Italy

Project Overview

Prof. Yoram Ofek - DIT - U. of Trento

RE-TRUST --- FET-STREP

Computing/Networking Convergence

- > Exponential growth in computing/networking
- > Leading to unifying: computing/networking
- > All machines are interconnected
- Ensuring that all machines are TRUSTED is critical [operating as specified]

Avoiding manipulation of programs/protocols
 STEALING content and information
 DENIAL of service - TCP example
 FAIR on-line bidding/trading/gaming

>

Remote Entrusting: Design Objective

How a remote code (SW application) on a 1st untrusted machine can be entrusted by a 2nd entrusting machine?" [albeit running inside an untrusted environment]

Functional Description: Remote Entrusting

> 2nd Entrusting Machine is ENTRUSTING the 1st Untrusted machine by verifying the Secure Tags

Definition of Trust for Remote Entrusting

has not been altered/tampered by an A software (code/protocol) is deemed if and only if its functionality untrusted/unauthorized entity prior to or during execution authentic/trusted

Trust necessary condition: some sort of "identity"
 Signatures/attestations/Authentications
of SW & HW in run-time

>{ Avoidance of the "man-at-the-end" attack
 [i.e., the untrusted user] }

Prof. Yoram Ofek - DIT - U. of Trento

RE-TRUST --- FET-STREP

Quality of Remote Entrusting SW and HW/SW Methods

Project Structure

Work-planning and timetable - Gantt

0	3	6	9	12	15	18	21	24	27	30	33	36
WP0 - Management and Coordination												
T0.1 Management activities												
T0.2 Risk management activities												
T0.3 Scientific/industrial advisory board activities												
WP1 - Architectural Framework												
T1.1 – Trust requirements, generic applications												
T1.2 – SW-based initial architectural framework												
T1.3 – HW/SW-based initial architectural framework												
T1.4 – SW-based reference architecture design												
T1.5 – HW/SW-based reference architecture design												
WP2- SW-based Tamper Resistance												
T2.1 – Trust model												
T2.2 – Secure interlocking and authenticity checking												
T2.3 – Dynamic replacement												
T2.4 – Increased reverse engineering complexity												
T2.5 – Design of entrusting protocol												
T2.6 – Proof of concept												
WP3 - HW/SW-based Tamper Resistance												
T3.1 – Trust model												
T3.2 – Hardware/Software co-obfuscation												
T3.3 – Encrypted code execution												
T3.4 – Observable cryptography												
T3.5 – Scalability and performance												
WP4 - Trust and Security Analysis												
T4.1 – Trust analysis of SW-based method												
T4.2 – Trust analysis of HW/SW-based method												
T4.3 – Reverse engineering complexity												
T4.4 – Comparative analysis with trusted computing												
T4.5 – Remote entrusting and Internet secure protocol	S											
WP5 - Dissemination												
T5.1 – Project oriented dissemination activities												
T5.2 – Scientific oriented dissemination activities												

Work package list

No.	Workpackage title	Lead contractor	Person- months	Start month	End month	Deliverable No.
WP0	Management and Coordination	P1	14	1	36	6
WP1	Architectural Framework	P1	36	1	36	5
WP 2	SW-based Tamper Resistance Methods	P2	95	1	36	7
WP 3	HW/SW-based Tamper Resistance Method	P4	72	1	36	5
WP 4	Trust and Security Analysis	P1	75	1	36	8
WP 5	Dissemination, Exploitation, Standardization	P1	18	1	36	5
	TOTAL		310			

WP1 - Architectural Framework

> Objective

- > To define and analyse generic application classes and their corresponding trust requirements
- > To define unified framework and specific requirements for the two basic methods:
 - > SW-based and
 - >HW/SW-based
- > To analyse the research results towards possible proof of concepts

WP1 - Architectural Framework > Description of work

- Task1.1 Trust requirements of generic classes of applications (Dates: MO-9)
 Participants: UNITN, POLITO, GEM+, KUL, SPIIRAS
- > Task1.2 SW-based initial architectural framework (Phase 1) (Dates: MO-9) - see diagram:
 - > Participants: POLITO, UNITN, KUL
 - > Subtask T1.2.1 Trust and security requirements
 - Subtask T1.2.2 Design alternatives: programming environments, operating systems, etc.
 - Subtask T1.2.3 General design analysis and initial trust attack models

Initial Functional Description: SW-based Tamper Resistance - TR

Prof. Yoram Ofek - DIT - U. of Trento

RE-TRUST --- FET-STREP

WP1 – Architectural Framework

> Description of work

> Task1.3 - HW/SW -based initial architectural framework (Phase 1) (Dates: M3-12)-see diagram:

> Participants: KUL, GEM+, UNITN

- > Subtask T1.2.1 Trust and security requirements for both SW and HW
- Subtask T1.2.2 Design alternatives: programming environments, operating systems, etc.
- Subtask T1.2.3 General design analysis and initial trust attack models

Initial Functional Description: HW/SW-based - TR

WP1 - Architectural Framework

- > Description of work
 - > Task1.4 SW-based reference architecture and product solution definitions (Dates: M18-30)
 - > Participants: UNITN, POLITO, KUL
 - Subtask T1.4.1 Reference architecture design. Refinement of initial architectural framework
 - Subtask T1.4.2 Proof of concept design based on the reference architecture
 - Subtask T1.4.3 Product solution definitions and possible standardization while collaborating with selected members of the scientific/industrial advisory board
 - > Task1.5 HW/SW-based reference architecture and product solution definitions (Dates: M24-36)
 - > Participants: UNITN, KUL, GEM+
 - Subtask T1.5.1 Reference architecture design. Refinement of initial architectural framework
 - Subtask T1.5.2 Proof of concept design based on the reference architecture
 - Subtask T1.5.3 Product solution definitions and possible standardization while collaborating with selected members of the scientific/industrial advisory board

Prof. Yoram Ofek - DIT - U. of Trento

WP1 - Architectural Framework

WP1 I	Deliverables List		
No.	Title	Responsible	Delivery date
D1.1	Analysis of generic classes of applications	UNITN	M6
D1.2	SW-based method initial architecture	POLITO	M6
D1.3	HW/SW-based method initial architecture	KUL	M12
D1.4	SW-based method final reference architecture design	UNITN	M30
D1.5	HW/SW-based method final reference architecture design	UNITN	M36
WP1 I	Vilestones List		
No.	Title	Responsible	Delivery date
M 1.1	Summary report of D1.2 and D1.3	POLITO/ KUL	M12
M1.2	Summary report of D1.4 and D1.5	UNITN	M36

> Objectives:

- > To design and compare various SW-based alternatives
- > To investigate and apply solutions developed for software dependability to remote entrusting
- > To design and analyze software tamper resistance using two basic methods:
 - > Dynamically replacing software modules during run-time
 - > Increasing the complexity of software reverse engineering
- > To design and analyze solution alternatives for continuous and secure signature generation

> Description of work

> Task2.1 - Trust model (Dates: M0-6)

- > Participants: UNITN, POLITO
 - Subtask2.1.1. Analysis of untrusted environment weaknesses and elicitation of trust assumptions
 - Subtask2.1.2. Initial estimation of reverse engineering complexity and the tradeoff between replacement and resistance to reverse engineering
- Task2.2 Secure interlocking and authenticity checking (Dates: M3-24)

> Participants: POLITO

- Subtask2.2.1. Software dependability techniques to securely combine original application and secure software module
- Subtask2.2.1. SW dependability techniques to protect authenticity of application code and data

> Task2.3 - Dynamic replacement for increased tamper resistance (Dates: M3-24)

- > Participants: UNITN, POLITO, SPIIRAS
 - > Subtask2.3.1. Replacement strategies for interpreted code
 - > Subtask2.3.2. Replacement strategies for compiled code
 - Subtask2.3.3. Automated and non-predictable generation of secure software

- > Description of work
 - > Task2.4 Increased reverse engineering complexity for software protection (Dates: M3-24)
 - > Participants: KUL, GEM+
 - > Subtask2.4.1. Source-to-source obfuscation.
 - > Subtask2.4.2. Obfuscation of Java byte code.
 - Subtask2.4.3. Protection of embedded keys with white-box cryptography techniques.

> Task2.5 - Entrusting protocol (Dates: M6-30)

- > Participants: POLITO, SPIIRAS
 - > Subtask2.1.1. Protocol design
 - > Subtask2.1.2. Protocol analysis

> Task2.6 - Proof of concept (Dates: M15-36)

- > Participants: POLITO, KUL, GEM+, UNITN
 - Subtask2.6.1. Identification of a sample application domain to be prototyped and selection of application technology (OS, programming language, support tools)
 - Subtask2.6.2. Development of prototype infrastructure and integration of solutions proposed in previous tasks

WP2 Deliverables List						
No.	Title	Responsible	Delivery			
D2.1	Trust model and assumption for software-based TR methods	UNITN	M 6			
D2.2	Methods to dynamically replace the secure software module and to securely interlock applications with secure SW module (interim)		M12			
D2.3	Methods to dynamically replace the secure software module and to securely interlock applications with secure SW module		M24			
D2.4	Protection methods for hardening the secure software module	KUL	M24			
D2.5	Protocol design	POLITO	M36			
D2.6	Proof of concept	POLITO	M36			
WP2 M	ilestones List					
No.	Title	Responsible	Date			
M2.1	Executive summary of initial version of SW-based approach	POLITO	M12			
M2.2	Selection of a sample application domain to be prototyped, and agreement on technological aspects of test-bed development		M12			
M2.3	Selection of possible obfuscation transformations for proof of concept	GEMPLUS	M24			
M2.4	Proof-of-concept and possible product solution analysis	POLITO	M36			

- > Objectives:
 - To investigate the combination of HW/SW-based protection
 - To utilize HW that alone may not be able to provide enough functionality, e.g., smart cards
 - > To investigate:
 - Low trust protection mode, execution of the code must be split between HW and SW, in a way that maximizes protection and minimizes the performance penalty
 - Full trust protection, methods that allow an attacker to observe the entire communication between the computing engine (the secure hardware) and the memory (in the PC), without learning any useful information

> Description of work

- > Task3.1 Trust model (Dates: M1-9)
 - > Participants: UNITN, GEM+, KUL
- > Task3.2 HW/SW co-obfuscation (Dates: M6-30)
 - > Participants: KUL, POLITO
- > Task3.3 Encrypted code execution (Dates: M9-33)
 - > Participants: GEM+, KUL
- > Task3.4 Observable cryptography (Dates: M4-24)
 - > Participants: KUL
- > Task3.5 Scalability & performance (Dates: M21-36)
 - > Participants: SPIIRAS , UNITN, GEM+, KUL

WP3 D	Peliverables List		
No.	Title	Responsible	Delivery
D3.1	Trust Model for the combined Hardware-Software approach	UNITN	M12
D3.2	First Analysis Encrypted Code and HW assisted SW Protection	KUL	M24
D3.3	Encrypted code final report	GEM+	M30
D3.4	Hardware assisted Software Protection for entrusting module	KUL	M33
D3.5	Report on combination of the different approaches	SPIIRAS	M36
WP3 N	filestones List		
No.	Title	Responsible	Date
M3.1	Trust model for HW/SW method	UNITN	M12
M3.2	Application of computation with encrypted data to whitebox crypto	GEM+	M24
M3.3	Plausibility analysis and exact goals for Task 3.5	KUL	M36

> Objectives:

- > To provide trust and security analysis of the tamper resistance techniques introduced in WP2 and WP3
- > To provide feedback to the overall solution architecture in WP1
- > To provide tools to evaluate the results delivered within the project
- > To develop methodology for evaluating reverse engineering complexity

- > Description of work:
 - > Task T4.1 Trust analysis of SW-based method (Dates: M6-24)
 - > Participants: SPIIRAS, POLITO
 - > Subtask T4.1.1. Analysis of possible attacks
 - Subtask T4.1.2. Trust analysis of interlocking, authenticity checking, and dynamic replacement
 - > Task T4.2 Trust analysis of HW/SW-based method (Dates: M12-30)
 - > Participants: KUL, GEM+, UNITN
 - > Subtask T4.2.1: Trust analysis of HW/SW Co-obfuscation
 - > Subtask T4.2.2: Trust analysis of encrypted Code Execution
 - Subtask T4.2.3: Trust analysis of white-box and physical observable cryptograph
 - Subtask T4.2.2: Implementability of the trust assumptions must be evaluated
 - Subtask T4.2.3: Analysis of pitfalls of HW/SW- based remote entrusting mechanisms and possible attacks on remote entrusting

Prof. Yoram Ofek - DIT - U. of Trento

- > Description of work:
 - <u>Task T4.3 Reverse engineering complexity</u> (Dates: M0-24)
 - > Participants: UNITN, POLITO
 - > Subtask T4.3.1: Evaluation metrics for code replacement
 - > Subtask T4.3.2: Evaluation metrics for code obfuscation
 - > Task T4.4 Comparative analysis with TC from OS perspective (Dates: M12-36)
 - > Participants: UNITN, KUL
 - Subtask T4.4.1. Comparative analysis (and synergies) of RE-TRUST solutions and alternative solutions using trusted hardware (i.e. TC).
 - Subtask T4.4.2. Analysis on which trust assumptions are required at the OS level to assure that RE-TRUST cannot be circumvented. We may investigate different levels of assurance

> Task T4.5 - Remote entrusting and Internet secure protocols (Dates: M6-30)

- > Participants: SPIIRAS, UNITN
 - Subtask T4.5.1 Analysis of integration of remote entrusting with existing Internet security protocols
 - Subtask T4.5.2 Integration and analysis of secure protocols to support remote entrusting methods. For instance, how to integrate public key infrastructure for server authentication

WP4 Deliveral	oles List		
No.	Title	Responsible	Delivery
D4.1	Initial trust analysis of SW-based and HW/SW	-POLITO	12
	based methods		
04.2	Trust analysis of SW-based method	POLITO	24
04.3	Analysis of the Reverse Engineering Complexity	UNITN	24
04.4	Trust analysis of HW/SW-based method	KUL	30
04.5	Comparative analysis of RE-TRUST with TC	UNITN	36
04.6	Analysis of OS issues within RE-TRUST	UNITN	36
04.7	Analysis of interaction of RE-TRUST wit	hSPIIRAS	36
	security protocols		
WP4 Mileston	es List		
No.	Title	Responsible	Date
M 4.1	Outcome of the reverse engineering investigation	n.UNITN	24
	Definition of the feasibility and of th	e	
	parameter to consider by replacement an	d	
	obfuscation		
M4.2	Results of trust analysis related to SW-base	dPOLITO	24
	methods		
M4.3	Results of the two trust analysis related t	o <mark>KUL</mark>	36
	SW/HW-based methods		