
1

Reverse engineering and Reverse engineering and 

mutation analysis mutation analysis 
in the context of software tampering and in the context of software tampering and 

authenticationauthentication

Paolo Tonella
ITC-irst, Centro per la Ricerca 
Scientifica e Tecnologica

Povo, Trento, Italy
tonella@itc.it



2

Software tamperingSoftware tampering

I O I O’

<tag1, …, tagN> <tag1, …, tagN>

Base functionality

Authentication
functionality

Tampered functionality

Authentication
functionality

What are the basic problems underlying software tampering?



3

Reverse engineeringReverse engineering

Functionality A

Functionality B

� Feature location: where is 
func. A (B) implemented?
� Slicing: what subprogram 
computes func. A (B)?
� Impact analysis: what are the 
ripple effects of changing given 
statements of func A?

These problems have been deeply investigated in the area 
of reverse engineering.



4

Context of reverse Context of reverse 

engineeringengineering

Source code

Design

Specifications

Higher-level abstractions

Code
analysis

Goal: supporting
� comprehension
� restructuring
� reengineering

knowledge



5

Feature locationFeature location

Feature location = determine code fragments specific of a 
given functionality. Beyond grep (i.e., lexical search based on 
regular expressions): dynamic analysis + concept lattice. 

Functionality A

Functionality B

Scen1

ScenN

A B

Common

proc1

proc2

proc3 proc4

Dynamic analysis 

Partial (incomplete) results:

false positives/negatives



6

SlicingSlicing

Functionality A

Functionality B

A slice is a subprogram that behaves (upon termination) as 
the original program for the computation of selected variables. 

S(a, n) = {s1, …}

S(b, m) = {s4, …}

S(a, n) � S(b, m) � Ø

Static analysis 

(Over-)conservative results: 
false positives



7

Impact analysisImpact analysis

Functionality A

Functionality B

Program dependencies are traversed and the change 
is propagated along them. 

� Control dependencies: 
� source = decision statement
� target = conditionally executed stmts

� Data dependencies:
� data flows from defs to uses

� Call dependencies

Statically computed dependencies 

(Over-)conservative results: false 
positives



8

Limitations of reverse Limitations of reverse 

engineeringengineering

Dynamic analysis:
� Under-approximation of actually involved components.
� Users must integrate it with extra knowledge about the program.

Static analysis:
� Over-approximation of actually involved components.
� Users must filter it with extra knowledge about the program.

Source
code

integrate
or

filter

under-approximations
or

over-approximations
Interpret



9

Reverse engineering for Reverse engineering for 

software tamperingsoftware tampering

Bad news:

� Feature location, slicing and impact analysis can be 
automated.
� Previously acquired knowledge can be reused, if the same or 

similar authentication mechanisms are employed.

Good news:

� Humans are in the loop.
� Obfuscation and similar techniques are effective as long as they

make human understanding of the code harder.



10

Mutation testingMutation testing

1 program P

2 begin

3 input(x);

4 if (x > 0)

5 x++;

6 end if

7 print(x);

8 end program

A program can be delivered only when 

test cases succeed revealing a set of 

known bugs (killing all mutants).

Both test suites are not satisfactory because they cannot reveal the defect in M2.

4 if (x == 0)

4 if (x != 0)

4 if (x >= 0)

5 x--;

5 x = 0;

5 x = 1;

M1

M2

M3

M4

M5

M6

x = 1

Kills: M1, M4, M5, M6

x = 0

x = 1

Kills: M1, M3, M4,
M5, M6



11

Mutation analysis for Mutation analysis for 

software integritysoftware integrity

Base functionality

Authentication
functionality

execute test cases

1. Mutation adequate test cases are 
defined.

2. The authenticator module runs 
periodically the test cases and 
compares the actual output against 
the expected one.

3. When mutations are revealed by the 
test cases, authenticity tags are no 
longer generated.

Being based on the I/O relationship of the base functionality, 
this technique is potentially resistant to reverse engineering 
attacks that change it (impact set = whole program).



12

ConclusionsConclusions

� Reverse engineering represents a serious threat to 
software integrity and authentication.

� Existing applications of reverse engineering 
indicate that the process can be only partially 
automated and the human is necessarily in the loop.

� Mutation analysis can be employed to generate 
authenticator modules that are able to reveal 
(malicious) software mutations.


