

Re-TRUST
Partner 4: COSIC

Brecht Wyseur

Katholieke Universiteit Leuven
brecht.wyseur@esat.kuleuven.be

Presentation outline

 COSIC Research Group
 Re-TRUST Scenario
 Software Tamper Resistance

Code Obfuscation
White-Box Cryptography

 HW/SW Co-obfuscation
 Conclusions

COSIC

 K.U.Leuven, Belgium; Dept. of Electrical
Engineering

 COmputer Security and Industrial Cryptography
 Founded in 1978
 Prof. B. Preneel; Prof. I. Verbauwhede; Prof. J.

Vandewalle
 http://www.esat.kuleuven.be/cosic/
 10 post-docs + 33 (phd-)researchers

COSIC research activities (1)

 Cryptographic algorithms
 Design (AES, RIPEMD-160, MQ-IP)
 Cryptanalysis
 Secure Implementations: hardware, software, HW/SW

co-design, side-channel attacks, white-box crypto
 Protocols: key establishment, anonymous

communications, broadcast encryption
 Fundamental research: Boolean functions,

secret sharing, algebraic curves, multiparty
computation

COSIC research activities (2)

Privacy & Identity
Management

Trusted platforms
and embedded

systems

Software obfuscation

Security in
ubiquitous/pervasive

systems

Document security,
watermarking and
perceptual hashing

Re-TRUST Scenario

Hardware

Entrusting
machine

Untrusted environment

Entrusting
Signatures

HW

Problem: a malicious user has full access to the untrusted machine

Trusted environment

SW Tamper resistance (WP2)

 T2.4 – Increased reverse engineering
complexity for software protection
Hide software behaviour

 Source-to-source obfuscation (C/C++)
 Obfuscation of Java byte code

Hide encryption keys
 White-box cryptography

Code obfuscation

 Goals
 Interlocking of secure software module (which contains

the trusted tag generator)
 Counter reverse-engineering
 Placement of dynamic updates
 Taxonomy

Code obfuscation (2)

 Definition:
Code obfuscation is “applying one or more code
transformations that make program analysis difficult”.

 Different abstraction levels:
 Transform code: source - intermediate - binary code
 Code analysis: source (e.g. C), binary (Assembly), …

 Different transformations
 Layout - data flow - control flow - preventive [Collberg et al.]

Code obfuscation (3)

 Obfuscation metrics
 potency, resilience, and stealth versus cost [Collberg et al.]

 Others: ongoing research

 COSIC expertise:
 Source code (C/C++) obfuscation
 Tamper resistance through self-encrypting code
 …

White-box cryptography

 Goal: hide embedded techniques
 Transform a cryptographic implementation into a

series of key-dependant lookup tables.
[S. Chow et al.]

White-box cryptography (2)

Internal Encodings External Encodings

T(x) = S(x + k)

Encoding: E' = F o E o G
F,G random bijections

S

+ k

T

White-box cryptography (3)

State of the art
 A White-Box DES Implementation for DRM

Applications (DRM 2002)
Fault Injection Attack (Jacob et al. DRM 2002)
Statistical Bucketing Attack + Improved

implementation (Link et al. ITCC 2005)
 White-Box AES (SAC 2002)

Cryptanalysis (O. Billet et al. SAC 2004)

White-box cryptography (4)

 Main interest for Re-TRUST
 Hiding embedded keys
 Challenge protection (against replay attacks)

 Other interests
 Internal encodings: diversity (tracing)
 External encodings: Interlocking
 Avoid dynamic collusion attacks?
 New paths: timing, dynamic updates, hardware

HW/SW-based TR (WP3)

 How to split functionality between hardware and software
 Trade-off

 HW-cost
 Performance
 Security
 Flexibility

 Tamper detection is hard when software can easily be
replicated [Wurster et al.]

HardwareHW

HW/SW-based TR (2)

 Research tracks
 HW assisted software protection
 Execution of small amount of code on HW
 Protection of cryptographic operations
 HW as a monitoring device
 HW as an entrusting device
 Assisting authentication: HW as an identification device, and to

establish a symmetric key for communication with entrusting
machine

Trusted Computing

 TCG Trusted Platform Module (TPM)
 Basic functionalities:

 RSA (public key crypto algorithms)
 Random number generator
 HMAC
 Secure hash: SHA1
 Tick counter/clock
 Monotic counter

 Attestation signing with a TPM certificate
 Problem: quite slow, limited applicability, limited

flexibility (programmability)

Smart Cards

 Offer more flexibility
 Easier to use in cooperation with legacy devices
 Increasing storage capabilities
 Interesting emerging technology (wireless

connection, Java/.NET VM, ...)
 For Re-TRUST

 Symmetric key establishment to counter proxy problem
 Can take over a few cryptographic operations
 As an identification device

HW boards

 Less compact
 USB interface / serial port / parallel port
 Scalable
 For Re-TRUST

Extended smart card functionality
Can take a larger part of computations
Use as an entrusting device

Conclusions

 Presented technologies which can be
deployed in Re-TRUST
Code Obfuscation
White-Box Cryptography
HW/SW Co-Obfuscation

 IP protection (TIVA, DRM 2005)

